video corpo

Software Optimization Advances Power Efficiencies in Global Telecom Solutions
1 / 9Páginas

{{requestButtons}}

Excertos do catálogo

Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 1

Software Optimization Advances Power Efficiencies in Global Telecom Solutions Maximize Hardware Investment by Achieving 32 Percent Power Savings

Abrir o catálogo na página 1
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 2

Software Optimization Advances Power Efficiencies in Global Telecom Solutions Sophisticated telecommunications systems offering higher bandwidth capacities, more intelligent processing architectures and more complex implementations result in greater power demands. And more power means higher operating costs, as well as more complex engineering to accommodate thermal management. As a result, power efficiency has emerged as one of the key areas for long-term improvement in telecom applications. Reduced energy usage means lower costs and diminished environmental impact; in turn, potential...

Abrir o catálogo na página 2
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 3

Introduction Hardware is commonly the starting point when evaluating telecom power efficiencies, given current silicon advances that provide capabilities for effectively managing a server’s power consumption. Kontron's Communications Rack Mount Servers (CRMS) incorporate these advances and are standard building blocks used in a variety of telecom and network applications; these high-performance systems effectively satisfy the demanding requirements and limited space of the telecom central office and data centers. However, software is considered less often and is routinely overlooked in the...

Abrir o catálogo na página 3
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 4

less power but require more time to return back to work. Since higher speeds consume more power, system architects would logically assume that reducing processing speeds will save power. However, occasionally P-states and C-states work against each other, requiring deeper knowledge of the application itself. For example, applying C-states may be a particularly prudent option given the high number of cores that can be found in enterprise servers or data center systems. A server may be implemented with eight cores but only require one to complete a particular task. Upgraded Kernels An...

Abrir o catálogo na página 4
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 5

Figure 3 shows a sample workload using two popular releases of the Linux kernel, 2.6.27 and 2.6.18. In particular, 2.6.27 adds the tickless kernel and 2.6.18 does not. Using the less sophisticated timing mechanism on the earlier kernel, the idle machine consumed 163 W versus 133W with the tickless kernel, which delivered an 18 percent savings in power. Even with a significant workload, savings topped 12 percent by using the more sophisticated timing feature of the current Linux OS. Power Governors Servers need a strategy for how fast to process data and how often to sleep, i.e. controlling...

Abrir o catálogo na página 5
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 6

Figure 4: shows the power savings achieved by choosing a lower power state for our particular workload. The top two curves are copied from Figure 1 which used only the “on-demand” kernel. The bottom line shows the power savings achieved by taking the tickless kernel (2.6.27) and applying the “user space” governor to place the processors in the lowest power state (i.e. lowest frequency). Overall, telecom applications driven by I/O present an interesting challenge. If the thread begins with the arrival of a packet, the best strategy depends on what is happening to that packet. A packet...

Abrir o catálogo na página 6
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 7

Core selection is another power vs. performance tradeoff that can be controlled by the user. If coded correctly, idle cores consume minimal power. As threads are assigned to cores however, performance tradeoffs may arise because certain resources are shared. For instance, hyperthreaded core siblings share most of the same CPU resources, and cores within a single CPU share input/output (I/O) and cache. Adding a second CPU doubles the cache, and sharing cache may or may not be preferred depending on the application. By default, the OS scheduler will dispatch threads as widely as possible...

Abrir o catálogo na página 7
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 8

(Transactions perSecondj Figure 6 shows the final results. Manufacturer Insight on Strategic Software Choices Rugged, carrier grade servers offer the performance, long life and reliability integral to secure telecom applications. Manufacturer expertise in developing these systems is essential in validating their ability to meet and exceed demanding performance requirements - but designers must understand that power policies and actual energy savings depend on workload and application architecture. Hardware may be the first line of defense to manage these industry priorities, however greater...

Abrir o catálogo na página 8
Software Optimization Advances Power Efficiencies in Global Telecom Solutions - 9

Kontron, the global leader of embedded computing technology, designs and manufactures embedded and communications standards-based, rugged COTS and custom solutions for OEMs, systems integrators, and application providers in a variety of markets. Kontron engineering and manufacturing facilities, located throughout Europe, North America, and Asia-Pacific, work together with streamlined global sales and support services to help customers reduce their time-to-market and gain a competitive advantage. Kontron’s diverse product portfolio includes: boards & mezzanines, Computer-on-Modules, HMIs &...

Abrir o catálogo na página 9

Todos os catálogos e folhetos técnicos Kontron

  1. COMe-cCT6

    2 Páginas

  2. COMe-mBT10

    3 Páginas

  3. COMe-mCT10

    2 Páginas

  4. SMARC-sAMX6i

    2 Páginas

  5. SMARC-sA3874i

    2 Páginas

  6. SMARC Starterkit

    2 Páginas

  7. ETX®-OH

    2 Páginas

  8. ETX®-LX2

    2 Páginas

  9. ETX® Eval

    2 Páginas

  10. KTH81/mITX

    2 Páginas

  11. KTQ77/FLEX

    2 Páginas

  12. KTA75/FLEX

    2 Páginas

  13. kta70m-mitx

    2 Páginas

  14. mITX-SKL-S-C236

    3 Páginas

  15. mITX-SKL-S-H110

    3 Páginas

  16. COMe-bBD7

    3 Páginas

  17. SMARC-sXAL

    4 Páginas

  18. 3.5"-SBC-APL

    4 Páginas

  19. mITX-KBL-H-CM238

    4 Páginas

  20. KTQM67/mITX

    2 Páginas

  21. kt-rt-bt

    4 Páginas

  22. SMARC-sXBTi

    2 Páginas

  23. KBox A-203-AI-GC

    4 Páginas

  24. STM32MP157

    4 Páginas

  25. Qseven-Q7AL

    4 Páginas

  26. COMe-bBD6

    3 Páginas

  27. COMe-cSL6

    2 Páginas

  28. 3.5"-SBC-VR1000

    4 Páginas

  29. COMe-mEL10 (E2)

    4 Páginas

  30. COMe-bV26

    4 Páginas

  31. COMe-bKL6

    3 Páginas

  32. Open-frame

    4 Páginas

  33. web-panel

    3 Páginas

  34. CP

    3 Páginas

  35. HMI SERIES

    2 Páginas

  36. COMe-cBTi6R

    2 Páginas

  37. COMe-bKL6R E2S

    2 Páginas

  38. ETX®-eval

    2 Páginas

  39. VX305H-40G

    4 Páginas

  40. EvoTRAC-P101

    2 Páginas

  41. EvoTRAC-P201

    2 Páginas

  42. EvoTRAC™G103

    2 Páginas

  43. KTQ87/mITX

    2 Páginas

  44. Qseven-Q7AMX7

    2 Páginas

  45. SMARC-sXQU

    2 Páginas

  46. SMARC-sAMX7

    2 Páginas

  47. SMARC-sXAL (E2)

    2 Páginas

  48. SMARC-sAMX8X

    2 Páginas

  49. SMARC-sAL28

    2 Páginas

  50. COMe-bCL6

    3 Páginas

  51. AT8910

    4 Páginas

  52. mITX-APL

    3 Páginas

  53. KTA55/pITX

    2 Páginas

  54. ETX®-LX2

    2 Páginas

  55. mITX-SKL-H

    3 Páginas

  56. mITX-BW

    4 Páginas

  57. COMe-bBL6

    2 Páginas

  58. ktt30-mitx

    2 Páginas

  59. KTQM87/mITX

    2 Páginas

  60. mitx-bdw-u

    2 Páginas

Catálogos arquivados

  1. COMe-cBW6

    2 Páginas

  2. Kbox

    2 Páginas

  3. Qseven-Q7AMX8X

    2 Páginas

  4. IN-VEHICLE SERVER

    2 Páginas

  5. TRACe LoRa-MQTT

    4 Páginas

  6. mitx-e38

    4 Páginas

  7. SMARC-sXBT

    2 Páginas

  8. pITX-E38

    4 Páginas

  9. KTAM3874/pITX

    2 Páginas

  10. vmpx_accessories

    2 Páginas

  11. vmp3_datasheet

    4 Páginas

  12. ds_cp371_052011

    2 Páginas

  13. Kontron Services

    2 Páginas

  14. Medical Catalog

    8 Páginas

  15. Embedded Boards

    31 Páginas

  16. Military Defense

    8 Páginas

  17. Box PC

    2 Páginas

  18. MicroTCA

    2 Páginas

  19. hmi_global_2012

    8 Páginas

  20. m2m_platforms

    2 Páginas