Catalog excerpts
IRM-AT IRM-AT METHANE INFRARED SENSOR Thermopile Detector Technical specifications Version 1.0 IRM-AT Methane infrared sensor – thermopile detector Figure 1 IRM-AT Schematic Diagram Bottom View Bottom View 1. Lamp Lamp return return 2. Lamp +5V Lamp +5V 3. Not connected Not connected 4. output Detector Detector output 5. Reference Reference output output 6. Thermistor Thermistor output output 7. OV OV supply supply Side Side View View All dimensions in millimetres (± 0.15mm) Notes: 1. Dimensions without tolerances 1. Dimensions without tolerances are nominal are nominal 2. Recommended PCB socket: Wearnes Cambion Ltd. code: 450-3326-01-06-00 2. Recommended PCB socket: Wearnes Cambion Ltd. code: 450-3326-01-06-00 3. Weight: < 15g 3. Weight: < 15g 4. Use antistatic precautions 4. Use antistatic precautions when handling when handling 5. Do not cut pins 5. Do not cut pins 6. Do not solder 6. Do not solder directly to pins directly to pins 7. We suggest this sensor is best used instrument where calibration and measurement can 7. We suggest this sensor is best used in a fixed sitein a fixed site instrument where calibration and measurement can be to acute in-situ, and the sensor is not subject to acute out in-situ, and the sensor is not subjectcarried outmechanical stress or changes of temperature. mechanical stress or changes of temperature. PERFORMANCE Performance Maximum power requirements 5.0 VDC, 60mA max. (50% duty cycle source drive) Maximum Power Requirements operating voltage 5.0 VDC, 60 mA VDC, 20mA max. (50% dutycycle source drive) Minimum 2.0 max. (50% duty cycle source drive) Source drive frequency 3 Hz typical, 50% duty cycle Minimum Operating Voltage 2.0 VDC, 20 mA max. (50% duty cycle source drive) Active/Reference output in air (peak-to-peak) 2 to mV @ Hz, 50% duty cycle Source Drive Frequency Typical active signal change for 3 Hz typical, 50%4duty3cycleV, 3 Hz, 50% duty cycle 2.5% CH 5% drop (typical) @ 5 Active/Reference Output in Air (peak-to-peak)for 2 toCH mV @ 3 30% drop (typical) @ 5 V, 3 Hz, 50% duty cycle Hz, 50% duty cycle Typical active signal change 100% 4 Response time (tCH ) < 40 s @ 20°C V, 3 Hz, 50% duty cycle Typical active signal change for 2.5% 5% drop (typical) @ 5 ambient 4 Warm-up time 30 minutes @ 30% drop (typical) @ 5 20°C, 5 Hz, 50% duty cycle V, 3 VDC Typical active signal change for 100% CH4 < 40 s @ 20°C ambient Response Time (t90) MTBF @ 5 VDC > 3 years Lifetime Warm-up Time 30 minutes @ 20°C, 5 VDC 4 Temperature signal Operating temperature range Storage temperature range Humidity range Integral thermistor (NTC, R25 = 100K� B= 3940 K) -20°C to +50°C (linear compensation from 0 to 40°C) -40°C to +75°C 0 to 95% rh non-condensing Temperature Signal Range 0 - 2.5% OperatingAccuracy Temperature Range < ± 500ppm Storage Temperature Range Resolution at zero < 200ppm Resolution at range < 400ppm Humidity Range Range Zero repeatability Limit Accuracy of detection ß= @ 95% Integral thermistor (NTC, 0.074 -= 100KΩ, 1.1 - 1.33940 K) R25 0.094 Span coefficient -20°C Linearisation coefficient b compensation from 0 to 40°C) to +50°C (linear 0.38 0.025 -40°C Linearisation coefficient c to +75°C 0.98 0.553 0 to 95% RH non-condensing 0 - 100%* < 300 ppm For further information on the performance of this sensor, on other sensors in the range or any other subject, please contact Alphasense Ltd. or visit our website at “ww
Open the catalog to page 1IRM-AT Performance Data IRM-AT Perf 2.5% volume methaneData erformance Figure 1 Response up to IRM-AT Perf erformance Data IRM-AT Performance Data Figure 2 Response up to 2.5% volume methane c Absorbance = span * (1-exp(-b*[CH4] )) default span @ 2% vol = 0.084, b = 0.38, c = 0.98 Patented optical design gives repeatable and stable absorbancy, following the BeerLambert Law. Patented optical design gives repeatable and stable Patented optical design gives repeatable stable This absorbancy, following the Beer-Lambert Law. allows and universal absorbancy, not reliant on linearisation,following...
Open the catalog to page 2All Alphasense catalogs and technical brochures
-
SO2-B4
2 Pages
-
NO2-B43F
2 Pages
-
NO-B4
2 Pages
-
H2S-B4
2 Pages
-
CO-B4
2 Pages
-
PID-AR5
2 Pages
-
PID-A15
2 Pages
-
PID-AY5
2 Pages
-
PID-AH5
2 Pages
-
SO2-D4
2 Pages
-
PID-AH2
2 Pages
-
CH-D3
2 Pages
-
O2-G2
2 Pages
-
NO2-D4
2 Pages
-
NO-D4
2 Pages
-
H2S-D4
2 Pages
-
PH3-BE
2 Pages
-
OPC-R2
2 Pages
-
CL2-D4
2 Pages
-
CO-D4X
2 Pages
-
SOH-A2
4 Pages
Archived catalogs
-
CO-CE
2 Pages
-
CO-BX
2 Pages
-
CO-BF
2 Pages
-
CO-AF
2 Pages
-
CO-AE
2 Pages
-
VOC Sensor
2 Pages
-
Hydrogen Sulfide Sensor
2 Pages
-
Carbon Monoxide Sensor
2 Pages
-
CL2-D4 Chlorine Sensor
2 Pages
-
CL2-B1 Chlorine Sensor
2 Pages
-
CL2-A1 Chlorine Sensor
2 Pages
-
SOH-A2
4 Pages
-
CO-AX
2 Pages
-
Dual Sensor
4 Pages
-
COH-A2
4 Pages
-
Carbon Monoxide Sensor
2 Pages
-
OX-A431 Oxidising Gas Sensor
4 Pages
-
OX-B431 Oxidising Gas Sensor
4 Pages
-
CO-A4
2 Pages
-
CO-B4
2 Pages
-
H2S-A4
2 Pages
-
H2S-B4
2 Pages
-
IRC-A1 Carbon Dioxide
3 Pages
-
IRC-AT Carbon Dioxide
2 Pages
-
IRM-AT Methane
2 Pages
-
NO-A4
2 Pages
-
NO-B4
2 Pages
-
NO2-A4
2 Pages
-
NO2-B4
2 Pages
-
O3-A4
2 Pages
-
O3-B4
2 Pages
-
PID-A1
2 Pages
-
PID-AH
2 Pages
-
SO2-A4
2 Pages
-
SO2-B4
2 Pages
-
AFE Sensor Board
2 Pages
-
ISB Individual Sensor Board
2 Pages
-
NDIR Transmitter Board
1 Pages
-
CO2-D1
2 Pages
-
4-20mA Transmitter Boards
2 Pages
-
NO-B1 Nitric Oxide Sensors
2 Pages
-
NO-A1 Nitric Oxide Sensors
2 Pages
-
D2 Miniature Sensors
4 Pages
-
CH-D3 Flammable Gas Sensors
2 Pages
-
CH-A3 Flammable Gas Sensors
2 Pages
-
CL2-B1 Chlorine Sensors
2 Pages
-
CL2-A1 Chlorine Sensors
2 Pages
-
Combustible LEL Sensor
2 Pages
-
Nitrogen Dioxide sensor
2 Pages
-
NDIR CO2 Sensor
4 Pages